Two-Step MT: Predicting Target Morphology

Franck Burlot, Elena Knyazeva, Thomas Lavergne, François Yvon

LIMSI-CNRS

9 December 2016

- Introduction
- 2 Morphological Re-inflection
- Impact of Data Size
- Taking Advantage of Larger Data
- Conclusions

Target morphology difficulties

Dissymmetry of both languages is hard to handle:

English	I will go by car.	Jan loves Hana.
Czech	pojedu autem.	Han <mark>u</mark> miluje Jan.

One English word can translate into several Czech words:

English	Czech		
beautiful	krásný krásného krásnému krásném krásným krásná		
	krásné krásnou krásní krásných krásnými		

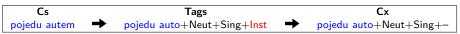
- Many sparsity issues (OOVs)
- The translation probability of a Czech word form is hard to estimate when its frequency is low in the training data.
 - → Idea: Simplify the translation process by making Czech look like English (beautiful \rightarrow krásn \emptyset).

Previous unsuccessful attempts

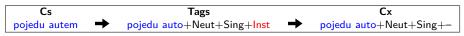
- Weller et al. 2013: English to French
- Weller et al. 2015: English to German
- Marie et al. 2015: same idea as Fraser 2012 (Russian)
- Allauzen et al. 2015: directly predict word forms from MT output with hidden CRF model (Russian and Romanian)

- Introduction
- Morphological Re-inflection
- Impact of Data Size
- Taking Advantage of Larger Data
- Conclusions

• Normalize target side of the data:

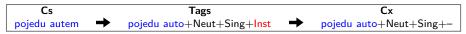


Normalize target side of the data:



Translate from English to normalized Czech:

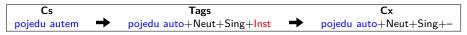
Normalize target side of the data:



Translate from English to normalized Czech:

Predict previously dropped tags:

Normalize target side of the data:



Translate from English to normalized Czech:

Predict previously dropped tags:

• Generate the word form:

Normalization of Czech

- Nouns: lemma, PoS, gender and number.
- Adjectives: lemma, PoS, negation, degree of comparison.
- Numerals: lemma, PoS.
- Pronouns: lemma, PoS, subPoS, person, gender, number, number[psor], gender[psor].
- Prepositions: word form, PoS, case
- Verb: lemma and whole tag sequence
- Adverb, interjection, conjunction, particle: Word forms

Output re-inflection

- Language model: Generate all word forms and let the language model choose the most likely one using disambig tool (Stolcke 2002).
- CRF: Stacked CRF models successively predicting gender, number and case, then running a joint model using Wapiti (Lavergne 2010).
- Greedy sequence labeller: SVM multi-class classifier performing a greedy search (Daumé 2009).

For both latter supervised models, we also need:

- Word form generation (given a lemma and a tag sequence)
- Final disambiguation: solve remaining (mainly stylistic) ambiguities using a unigram model.

- 1 Introduction
- 2 Morphological Re-inflection
- Impact of Data Size
- Taking Advantage of Larger Data
- Conclusions

Experimental setup

- Ncode and Moses (contrast), 4-gram KenLMs, Mira optimization
- IWSLT'16 data (this includes WMT'16)
 - Development set: TED test 2010 + 2011
 - Test set: Ted test 2012 + 2013
 - Parallel data:
 - First 10k from TED training set
 - Full TED set (117k)
 - + QED (242k)
 - + europarl (885k)
 - + news-commentary (1M)
 - Monolingual data (various subsets ranging from 5M to 200M):
 - Target side of the biggest parallel corpus
 - Czeng-1.6-pre subtitles
 - news corpora (WMT'16)
 - common-crawl (WMT'16, filtered)

Growing parallel data

Data

	Data	en2cs	LM	CRF	Greedy
	10k	10.06	9.96 (-0.10)	11.60 (+1.54)	11.64 (+1.58)
	117k	15.70	15.20 (-0.50)	$16.70 \ (+1.00)$	16.78 (+1.08)
	242k	15.96	15.32 (-0.64)	16.72 (+0.76)	16.90 (+0.94)
	885k	16.75	16.45 (-0.30)	$17.74 \ (+0.99)$	17.94 (+1.19)
	1M	17.14	16.51 (-0.63)	17.64 (+0.50)	17.88 (+0.74)
_			()		
-	Data		(: : :)	Ncode	
-	Data	en2cs	LM		Greedy
-	Data 10k	en2cs		Ncode	
-			LM	Ncode CRF	Greedy

Moses

BLEU scores over en2cs and en2cx2cs

16.67 (-0.27)

16.64 (-0.51)

18.04 (+1.10)

17.99 (+0.84)

18.25 (+1.29)

18.13 (+0.98)

885k

1M

16.94

17.15

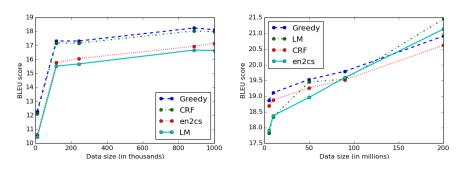
Growing monolingual data

Data	en2cs	LM	CRF	Greedy	
5M	18.01	18.05 (+0.04)	18.73 (+0.72)	18.84 (+0.83)	
10M	18.58	18.42 (-0.16)	18.87 (+0.29)	19.05 (+0.47)	
50M	18.97	19.19 (+0.22)	19.02 (+0.05)	19.22 (+0.25)	
90M	19.34	19.40 (+0.06)	19.26 (-0.08)	19.51 (+0.17)	
200M	20.71	20.81 (+0.10)	19.75 (-0.96)	20.02 (-0.69)	
	Ncode				
Data			Ncode		
Data	en2cs	LM	Ncode CRF	Greedy	
Data 5M	en2cs	LM 17.82 (-0.09)		Greedy 18.87 (+0.96)	
			CRF		
5M	17.91	17.82 (-0.09)	CRF 18.69 (+0.78) 18.88 (+0.50) 19.26 (+0.30)	18.87 (+0.96)	
5M 10M	17.91 18.38	17.82 (-0.09) 18.34 (-0.04)	CRF 18.69 (+0.78) 18.88 (+0.50)	18.87 (+0.96) 19.11 (+0.72)	

Moses

BLEU scores over en2cs and en2cx2cs

Model Comparison



Scores for re-inflection using different models over increasing parallel and monolingual data size.

- Introduction
- 2 Morphological Re-inflection
- Impact of Data Size
- Taking Advantage of Larger Data
- Conclusions

N-best hypothesis re-inflection

- Re-inflection with 1-best hypothesis: fixed set of words, fixed order
- Re-inflection can take advantage of the diversity provided by n-best hypothesis

N-best hypothesis are re-inflected and given a new score with an LM trained on fully inflected Czech. All scores (Translation step and LM) are interpolated using Mira. Two kinds of LM:

- N-gram LM (KenLM)
- Neural LM with characted-based word representation

We also take the k-best CRF predictions, leading to nk-best hypothesis.

N-best hypothesis re-inflection

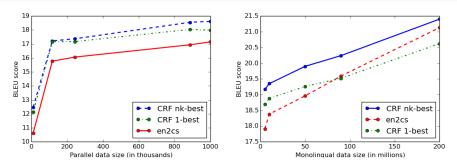
Model	10k/10k	117k/117k	242k/242k	885k/885k	1M/1M
en2cs	10.62	15.77	16.06	16.94	17.15
LM	10.42 (-0.20)	15.47 (-0.30)	15.81 (-0.25)	16.64 (-0.30)	16.72 (-0.43)
CRF	12.39 (+1.77)	17.31 (+1.54)	17.17 (+1.11)	18.24 (+1.30)	18.23 (+1.08)
+ CRF k-best	12.47 (+1.85)	17.22 (+1.45)	17.37 (+1.31)	18.55 (+1.61)	18.62 (+1.47)
Greedy	12.39 (+1.77)	17.49 (+1.72)	17.65 (+1.59)	18.31 (+1.37)	18.55 (+1.40)
Model	885k/5M	885k/10M	885k/50M	885k/90M	885k/200M
en2cs	17.91	18.38	18.96	19.59	21.13
LM	17.91 (+0.00)	18.30 (-0.08)	19.20 (+0.24)	19.81 (+0.22)	21.29 (+0.16)
CRF	18.81 (+0.90)	19.23 (+0.85)	19.50 (+0.54)	20.02 (+0.43)	21.07 (-0.06)
+ CRF k-best	19.17 (+1.26)	19.35 (+0.97)	19.90 (+0.94)	20.24 (+0.65)	21.40 (+0.27)
Greedy	19.23 (+1.32)	19.54 (+1.16)	19.84 (+0.88)	20.23 (+0.64)	21.35 (+0.22)

BLEU scores over en2cs and en2cx2cs (Ncode)

Setup	TED-2015	TED-2016	QED-2016
en2cs baseline	18.37	15.27	16.20
N-gram LM	19.65 (+1.28)	16.63 (+1.36)	16.25 (+0.05)
WE	19.65 (+1.30)	16.66 (+1.39)	16.26 (+0.06)
CWE	19.77 (+1.42)	16.80 (+1.53)	15.96 (-0.24)
CWE-CWE	19.25 (+0.88)	16.31 (+1.04)	15.27 (-0.93)

BLEU scores for re-ranked re-inflected nk-best translation hypothesis (en2cx2cs) over the official IWSLT 2016 test sets

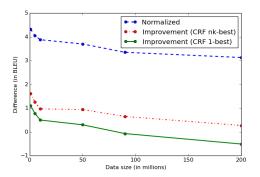
Ranking Comparison



Scores for CRF re-inflexion of 1-best and nk-best hypothesis over increasing parallel and monolingual data size.

Source I will bypass you
CRF 1-best budu **ti** obejít
will you-Dative bypass-Perfective
CRF nk-best budu **tě** obcházet
will you-Accusative bypass-Imperfective

Ranking Comparison



Difference in BLEU score between baseline (cs) and both normalized (cx) and re-inflected outputs (cx2cs) with growing monolingual data.

- 1 Introduction
- 2 Morphological Re-inflection
- Impact of Data Size
- Taking Advantage of Larger Data
- Conclusions

What do these experiments show?

- Re-inflection is more effective in low-ressource conditions
- Less, but still effective when vast amounts of monolingual data available (LM re-inflection and / or n-best re-scoring)
- 885k/200M system generates 6.82% of word types not seen in training data (1.76% tokens)

There is a right model for each data setup:

- \bullet Weller et al. 2013 got no improvement with CRF re-inflection on en2fr (9M/32M)
- Same for Marie et al. 2015 on en2ru (2.3M/46M)
- ullet Fraser 2012 got no improvement with n-best re-inflection on en2de (1.5M/10M)

Future work:

- Manual normalization is not optimal, how can this be done automatically?
- Strategies to lower dependency on human informed ressources quality (tagger, dictionary)
- How does re-inflection perform with neural MT?

Thank you for your attention!

