

Towards Improving Low-Resource Speech Recognition Using Articulatory and Language Features

Markus Müller, Sebastian Stüker and Alex Waibel

Institute for Anthropomatics and Robotics, Interactive Systems Lab

www.kit.edu

Low-Resource Speech Recognition

- Long tail of languages with only limited data available
- Train multilingual speech recognition systems
 - Merge training data from multiple languages
 - Built system with multilingual phone set
- Adapt neural networks to languages
 - Language Feature Vectors, similar to i-Vectors
 - Append language information to acoustic features
- Use articulatory features (AFs) as additional input features
 - Phoneme inventory is limited
 - Phonemes represent certain AFs configuration
 - Detecting AFs: No limitation to configurations

By of the translation (English and French) : Eric Gaba (Sting) - Image:Mapa_Lenguas_del_Mundo.png under GFDL created by es:Usuario:Industrius using Image:BlankMap-World.png made by User:Vardion, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2107256

Training Data

- TV broadcast news from Euronews
- Multilingual speech corpus
- 70h per language

Language	Audio Data	# Recordings	
Arabic	72.1h	4,342	
English	72.8h	4,511	
French	68.1h	4,434	
German	73.2h	4,436	
Italian	77.2h	4,464	
Polish	70.8h	4,576	
Portuguese	68.3h	4,456	
Russian	72.2h	4,418	
Spanish	70.5h	4,231	
Turkish	70.4h	4,385	
Total	715.6h	44,253	

Our HMM/ANN Hybrid Architecture

4

Architecture for LFV Extraction

- Increased context width \rightarrow language information long-term in nature
- LFV extraction: Discard layers after bottleneck
- Trained on 70h per language on 9 languages

Architecture for LFV Extraction

- Increased context width \rightarrow language information long-term in nature
- LFV extraction: Discard layers after bottleneck
- Trained on 70h per language on 9 languages
 - TV broadcast news from Euronews

6

Example Language Feature Vectors

5 examples per language

Example Language Feature Vectors

5 per language

Markus Müller – Towards Improving Low-Resource Speech Recognition Using Articulatory and Language Features

Adding LFVs to ASR Systems

- LFVs added to acoustic input and bottleneck features
- Provide implicit language information to networks

e.g. place or articulation, tongue position Decomposition configuration

Articulatory Features (AFs)

Phonemes represent certain configuration of articulators

Represent state of articulators from the human vocal tract

- Configurations limited by phoneme inventory
- Phoneme inventory limited by languages seen during training
- Detecting AFs directly allows for unlimited configurations
- Using AFs as additional input feature
 - Language universal

By Arcadian - http://training.seer.cancer.gov/head-neck/anatomy/overview.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1678037

Articulatory Features (AFs) 2

- **7** types of AFs
 - 3 for consonants (cplace, ctype, cvox)
 - 4 for vowels (vfront, vheight, vlng, vrnd)
 - Added additional target "does not apply"
- Additional: Detect type of phoneme
 - Consonant, vowel, noise, silence
- Discrete valued AFs

11

Name	Description	# Classes	
cplace	Place of articulation	8	
ctype	Type of articulation	6	
CVOX	Voiced	2	
ptype	Type of phoneme	4	
vfront	Tongue back / front	3	
vheight	Height of tongue	3	
vrnd	Lips rounded	2	
vlng	Type of vowel	4	

AF Training Data

Created phoneme / AF mapping using definitions from MaryTTS

<vowel ph="Y" vlng="s" vheight="1" vfront="2" vrnd="+"/>
<consonant ph="p" ctype="s" cplace="l" cvox="-"/>

- Obtained AF training data based on labels from ASR systems
 - Phonemes modeled by 3 sub-phone states (begin, middle, end)
 - Mapped phonemes to AFs
 - Extracted data only from middle sub-phone states
 - Articulators in static position, do not move from one target to another
- Trained networks on data from 4 languages
 - English, French, German, Turkish

AF Network Training

- Trained networks for AF extraction independent of each other
 - Prevent co-adaption based on combinations present in languages
- Multi-task Learning
 - Shared Hidden Layers
 - One output per AF

Evaluation of AF Extraction

- Networks trained on 70h of French, German and Turkish
- Frame error rate (FER) on validation set
- Adding LFVs to input features lowers FER
- Mixed results for Multi-task Learning

Setup	LFV	MTL	cplace	ctype	cvox	ptype	vfront	vheight	vlng	vrnd
1	-	-	8.4	8.2	7.8	14.8	7.2	7.9	7.3	6.2
2	•	-	7.0	6.8	6.3	12.7	5.8	6.6	5.7	5.0
3	•	•	7.3	6.9	6.2	12.6	5.7	6.6	5.5	4.9

Evaluation of AF Extraction (2)

- Networks trained on 4 languages, with LFVs
 - English, French, German, Turkish
- FER on English validation set

Setup 1

- Trained on 10h per language
- Setup 2
 - Trained nets first on 70h of French, German, Turkish
 - Additional fine-tuning on 10h of all 4 languages, reduced learning rate

Setup	3L pre-train	cplace	ctype	cvox	ptype	vfront	vheight	vlng	vrnd
1	_	9.1	9.7	9.5	16.4	8.8	7.9	8.3	6.0
2	●	8.8	8.2	8.2	15.2	7.8	7.2	7.5	5.3

AF Based ASR Systems

- Systems trained on 4 languages, 10h per language
 - English test set
- Multilingual system
- Using AFs as input features
 - Concatenating outputs of networks
 - 39 dimensional feature vector
- Replacing IMel + tone with AFs does not lead to improvements
- Adding LFVs increases performance

Setup	Features	LFV	WER
1	lMel+T	-	20.2%
2	AF (3L)	_	22.6%
3	lMel+T	•	18.7%
4	AF (3L)	•	21.8%
5	AF (4L)		20.2%

Combining Multiple Input Features

- Combine IMel + tone with AFs
- Stacked input features
- All systems using LFVs
- Adding AFs trained on 3 languages decreases performance
- Adding AFs trained on 3 languages and fine-tuned on 4 increases performance

System	AF	WER	
1	_	18.7%	
2	AF(3L)	19.0%	
3	AF(4L)	18.5%	

Combining Outputs of Different Systems (CNC)

- IMel + tone (IMel), MFCC + MVDR + tone (M2), AF
- All systems use LFVs
- Confusion network combination
 - Same improvements by combining two systems
 - AFs contribute to CNC equally as M2
- Combining all 3 systems leads to best results

Setup	lMel	M2	AF	WER
1	•	-	-	18.7%
2	-	•	-	18.7%
3	-	-	•	20.2%
4	•	•	-	18.1%
5	-	•	•	18.1%
6	•	-	•	18.1%
7	•	•	•	17.3%

Conclusion

- Neural networks for articulatory feature extraction benefit from LFVs
- Adding AFs to IMel + tone shows slight improvement
- Incorporating AF based ASR system in CNC shows improvements
 - AFs contribute as much as, e.g., MFCC + MVDR in system combination

Thank you!