

The 2016 KIT IWSLT Speech-to-Text Systems for English and German

Thai-Son Nguyen, Markus Mueller, Matthias Sperber, Thomas Zenkel, Kevin Kilgour, Sebastian Stueker and Alex Waibel

Iinteractive System Labs, Institute for Anthropomatics and Robotics

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- IWSLT 2016 ASR Tasks
 - **English Talk**
 - **English and German MSLT**
- System Overview
- Evaluation Setups
 - Feature Extraction
 - Feed-forward and LSTM LM
 - GMM & DNN Systems
 - **Speaker Adaption Models**
- Results and Discussions
- Conclusion

2

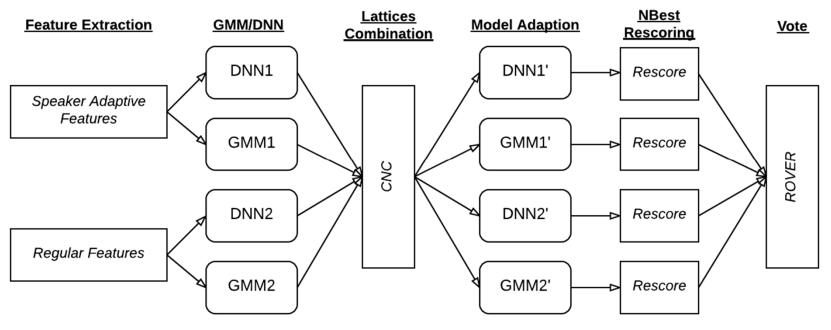
IWSLT 2016 ASR

- English Talk task
 - TED talks and talks from the QED Corpus.
 - Various topics, spontaneous speaking style
 - Not segmented
- English and German MSLT task
 - Conversations conducted via Skype
 - With provided segmentations
 - Unknown speakers

16-12-08

System Overview

Evaluation Setups



Results

System Overview

The pipeline involving the techniques to build final systems

IWSLT 2016 ASR \supset System Overview \supset Evaluation Setups \supset Results \supset Conclusion

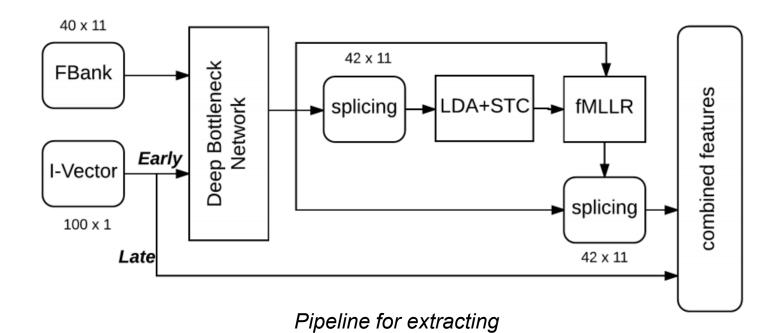
Evaluation Setups

- Feature Extraction
 - Bottleneck features
 - Speaker adaptive feature (SAF)
- Language Models
 - Feed-forward
 - LSTM LM
- Systems
 - GMMs and DNNs using SAF
- Speaker Adaption Models

16-12-08

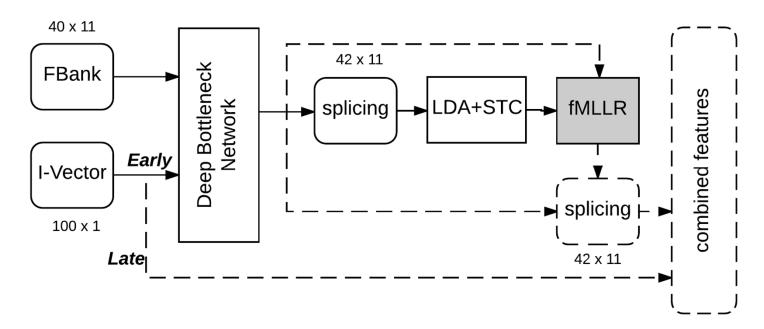
System Overview

Evaluation Setups



Results

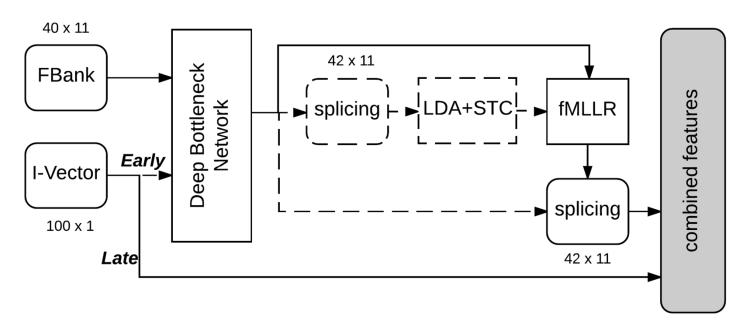
Feature Extraction



Speaker Adaptive Feature (SAF)

Input Features for GMMs

We used FBank and MVDR+MFCC+T (M2+T) features to build two GMMs



Feature Extraction for GMMs

Input Features for DNNs

Also FBank and MVDR+MFCC+T features for DNNs

Feature Extraction for DNNs

Language Models

- 4-gram LM from 150k words for English and 300k words for German
- Feed-forward Neural Network LM
 - 4 sigmoid layers of 600 units
 - 200-dimensional word embedding for the vocabulary size of 20k
 - To be used directly while decoding
- LSTM-RNN LM
 - 2 LSTM layers of 650 units
 - Vocabulary size of 50k
 - To rescore n-best lists

DNN & GMM Systems

DNNs

- 8k states of CD-Phone for English systems, 18k states for German systems
- SAF-IMEL and SAF-M2+T

■ GMMs

- The same number of CD-Phone states
- The same front-ends

System Overview

Evaluation Setups

Results

System Training

- 480 hours for English, 360 hours for German
- Deep feed-forward neural network
 - Input layer of 11-15 stacked frames
 - 5-6 hidden layers with 2000 units per layer
 - Pre-training with denoising auto-encoders
 - Fine-tuning with cross-entropy loss function
 - Newbob training schedule
- Deep bottleneck network
 - Have the same architecture as the DNNs
 - Except a bottleneck layer of 42 units

Speaker Adaption

- Use transcriptions from the CNC system
- Align and eliminate the frames with confidence score less than 0.7
- GMMs
 - fMLLR and MLLR
- DNNs
 - One adapted DNN per speaker
 - Training one more epoch on the adaption data with a small learning rate

N-best List Rescoring

- Janus-based systems
 - Use single or combined system with feed-forward LM to generate 1000-best list
 - Then rescore with LSTM-RNN LM
- Kaldi-based EN system (s5 recipe)
 - Use 3-gram LM to generate 1000-best list
 - Then apply LSTM-RNN LM to rescore

Evaluation Setups

Results

English Talk Task

System	tst2013	Gain
GMM(BN-M2+T)	14.4	-
DNN(IMEL)	14.9	_
GMM(SAF-M2+T)	13.4	1.0
DNN(SAF-IMEL)	12.0	2.9
CNC-4-sys	10.5	1.5
GMM(SAF-M2+T) adapted	10.5	2.9
DNN(SAF-IMEL) adapted	9.8	2.2
Kaldi-s5 RNN rescored	11.8	-
ROVER-5-sys	9.4	0.4

Results for TED Talk task on tst2013

English MSLT Task

System	dev2016	Gain
GMM(BN-lMEL+T)	26.7	_
GMM(BN-IMEL+IVec)	26.6	_
DNN(lMEL+T)	27.1	_
DNN(lMEL+IVec)	27.6	-
DNN(BN-IMEL)	26.6	_
DNN(BN-M2+T)	26.7	_
CNC	22.9	3.7
CNC rescored	21.6	1.3

Results for English MSLT task on dev2016

German MSLT Task

System	dev2016	Gain
DNN(BN-IMEL+T)	33.7	_
DNN(BN-IMEL+T+bsv)	33.8	_
DNN(BN-M2+T)	33.0	_
DNN(BN-M2+lMEL+T)	32.7	_
DNN(Mod-M2+lMel+T)	32.3	-
CNC	30.8	1.5
CNC rescored	28.7	2.1

Results for German MSLT task on dev2016

- Our used techniques and systems
 - Speaker Adaptive Feature
 - Feed-forward & LSTM-RNN LM
 - Model Adaption
 - System Combinations
- WER results on the official tst2016 set:
 - 8.5% on English Talk
 - 22.3% on English MSLT
 - 25.5% on German MSLT

Training Data

About 483 hours and 364 hours for acoustic modeling of English and German systems

Source	# Amount
Quaero from 2010 to 2012	200 hours
Broadcast news [8]	80 hours
TED-LIUM v2 [9]	
excluding disallowed talks	203 hours
Total	483 hours

English acoustic modeling data

Source	# Amount
Quaero from 2009 to 2012	180 hours
Broadcast news	24 hours
Baden-Württemberg parliament	160 hours
Total	364 hours

German acoustic modeling data

Results – Talk Task

System	tst2013	tst2014
GMM(SAF-IMEL)	13.5	11.0
GMM(SAF-M2+T)	13.4	10.9
DNN(SAF-IMEL)	12.0	10.4
DNN(SAF-M2+T)	12.3	10.0
CNC	10.5	8.6
GMM(SAF-IMEL) adapted	10.7	8.5
GMM(SAF-M2+T) adapted	10.5	8.6
DNN(SAF-IMEL) adapted	9.8	8.6
DNN(SAF-M2+T) adapted	10.2	8.8
Kaldi-s5 RNN rescored	11.8	8.6
ROVER	9.4	7.8

Results for English talk task on tst2013 and tst2014

IWSLT 2016 ASR \supset System Overview \supset Evaluation Setups \supset Results \supset Conclusion